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ABSTRACT

[n many two-dimensional Lagrangian rsdistion hydrodynamic
calculations, shear along material boundaries is 8 serious
problem. Since the mesh is tied to the matenial, this shear
will cause distortions in the mesh that make the cakulations
very difficult The approach described in this paper adopts a
semi-Culerian calculation that allows material flow through a
Lagrangian mesh along an interface. The basic ides is to
cousider each point along the slip line temporarily as a
double point. One would then calculate the motion of each
point separately and then pull the points beck together using
the automatic rezone method.  This would sllow the
materials to shesr along the interface. This peper will
describe the method as used in a two-dimensional Lagrangisn
code. The formation of a shaped charge jet is computed
using the present methed, and the results are discussed with
a.ndmthomlhcshpuumem. A nonsymmetric radiation-
driven shock problem is aiso shown.

1 INTRODUCTION

In many two-dimensional l..agrlng\mrldnuonhyckodymmlc
calculations, shear along matenal boundaries is & serious
problem. Siuce the mesh is tied to the materiai, this shesr
will cause distortions in the mesh that make the calculations
very difficult What is needed to handle '\is situation is s
method of allowing material flow along interfaces.

A pumber of methods have been implemented to try to ke
care of this problem. Oue of the most successful of these
methods for hydrodynamic calculations has been to turn the
mterface into two lines in the mesh that move semi-
independently. However, this method makes it necessary to
use some approximations at the mterface for computing
special physics; for cxample, the radiation hydrodynamic
coupling problems.

The approach described in this paper adopts a semi-Eulerian
calculation that sllows material flow through a Lagrsngisn
mesh slong an interface. It is not nacessary to have any
special mesh, and all calculations, other than the
hydrodynamics, arc unchanged. The basic ide is to consider
cach point along the slip line temporarily as s double point.
One would then calculate the motion of each point seperately
and then pull the points back together using the sutomatic
rezone method (1]. This would allow the materials to shear
along the interface.

This paper will describe the method as used in a two-
dimensional Lagrangian code. The formation of a shaped
charge jet is computcd using the present method and the
results are discussed with and without the slip treatment A
nonsymmetric radiation-driven shock problem is also shown.

2 GENERAL DESCRIPTION OF THE METHOD

In a gue Lagrangian code, the molecules near a boundary in
one zone are cffectively tied to the molecules near that same
boundary in the adjacent zone. Zones along an mterface
camnot slide or slip with respect to each other even if such
slip were physically desirable or reslistic. The purpose of the
slip code is to allow these two materials to slip with respect
to each other.

In the logical domain, we use £ and k lines to represent the
zone boundary. Since the method for treating e £ line slip
is the same as for & line. We like to describ the slip along
the £ line only.

First, we consider the slip interface as having two additional
mass points: onc associatcd with the two zone masses above
the interface and the other with the two zone masses below
the interiace. We calculate the velocities of these two assumed
points seperately by using s modified form of the Schuiz 2]
hydrodynamic equations.

If we refer to Schulz's Report UCRL-6776 (3], pp 28-29 (also
sce Appendix A of this paper for more detailed denvation)
where he gives his acceleration equations; we sec that at each
pode he has 4 terms (sce Fig. 1), each weighted by a 7] or &
which are derived from the spacing (see Eq. (A-24) and (A-
25)). In Fig. 1, let us take the lme {=/ (for
k=k-1k, and k +1) as the slip line. We temporarily
assume that point G{(k,£) is two points (sbove and below
£). We cakulste an accelerstion, velocity, and position
above £ and below £. Then we pull the two positions back
together with the rezone technique to form a single point.
The mesh will be moved through the material allowing the
materials on both sides of the line to move with respect to
each other. We will leave the new velocities above ¢ and
below £ as they are. After the rezone, an appropriate velocity
for the single point will be formed for the use in the normal
code computation,



' For the above ¢ calculation, we drop out the first term on
the right-hand side of Eq. (A-27) altogether (see Fig. 2), i.e.,
Me=0. Since n,, =0, we have the coefficient of the
third term equal to 2. The cocthicients of the 2nd and 4th
terms are unchanged. Therefore, Eq. (A-27) becomes
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For the below £ calculation, we drop out the third term on
the right-hand side of Eq. (A-27) altogcther, i.c., make
2~1n,, = or 7, , =2, again the cocfficicnts of the 2nd and

4th terms are unchanged. Therefore, Eq. (A-27) becomes
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The results are shown in Fig. 3. In calculating the
momentum equations, we use term 3 as they would be used
in pon-slip calculations. This choice is important because it
means that the pressures in material B affect the velocities in
material A and vice versa. Consequently, the scparste
accelerations are nct completely independent. However we are
allowing the two sets of mass to move differently, if they are
so inclined, because different accelerations applied to two
points with the same position will give different velocities
and hence different new positions. Using the rcsnilt of Eq. (1),

n
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n

we can get the new velocity vector at time 7 + E- from
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The new location S for the above £ zones (See Fig. 4) is
computed from
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and the new location W for the below £ zones is obtained
by using Egs. (2), (3), (4), and (5). Fig. 4 shows the zones
along the mterface after the two separste motions have been
calculated. These zones may overlap, separate, etc. In the
present example, as shown in Fig. 5, points S and W have
penctrated into the other material. Now we have the two
points in different positions. We now pick a point where they
should coincide (such as the average position). There are a
number of possible ways to pick this position.

Let M, be the mass of the zone DHSE and M, of the

zone HFPS as shown in Fig. 5. Similarly, M, is the mass
of the left zone below £ and M, is that of the right zone. To

get the position of the coincident point N, we use the mass-
weighted av of the two slip velocities. For example, the
coordinates of /V are
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(L“E) is obtained from Eqs. (1), (3), and (4), while

1
ar=

1
(u,.,z ) is from Egs. (2), (3), and (4). (Vu’ ) is
b average
A
calculated similar to (u,_ & ) .
average

Picking a coincident point, N, for the two points, S and
W, defines a displacement for both of the points which is
used is rezoning. We now use the rezone [ 1] package to move
the points together with the material outside the zones treated
as a vacuum. Material may tansfer between zone DHSE

and zone HFPS which have the same kind of material, but
material in M, cannot move to M,. In Fig. 5, the material
in AHTN will be remaved from M aod added to M.
After the rezone calculations, the kinetic energy or the internal
cncrgymnybetmufamdm&e_muuidhﬂﬁu. The
mesh line inside the zones, e.g., HT, is moved through the
material, leaving the material in its new position, thus
allowing slip along the intexface. In the resultant mesh, the
temporary separation of the points is climinated. The two
velocities on the temporary points are preserved for use on the
next cycle. This prrcess is repeated for each point along the

slip line. The slip ong & k line is handled in a similar
way.
+ 1 H
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Fig. 1. The Lagrangian zones (or logical zones) with slip
line along £ = { line. The 1st, 2nd, 3rd, and 4th
terras represent the four term on the right-hand side
of Eq. (A-27).
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Fig. 2. Only 2nd, 3rd, and 4th terms are used for
computing the momentum equation, Eq. (1), for
the above £ calculation.
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Fig. 3. Only 1st, 2nd, and 4th terms are used for
computing the momentum equation, Eq. (2), for
the below £ calculation.
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Fig. 4. Point S is the ne v location of G for the above £
calculation via Eq. (1). Similarly, the new
location W is from Eq. (2) for the below £
calculation.

Fig. 5. The top figure is the abovc ¢ zones. After a mass
weighting of velocities, the coincident point N is
defined. Points 5 and 6 indicate the zone center of
DHSE and HFPS. Similar notations are used
for the below £ zones as described in the lower
figure.

3 CALCULATION OF SHAPED CHARGE PROBLEM
WITH SLIP

The shaped charge used in this study is described in Fig. 6.
The aluminum cone liner has an outside diameter of 6 cm
and thickness of 1.7023 cm and is divided into six zones.
The shaped charge is detonated with a EX-12 detonator
which initiates the dewonation-sheet explosive. The
detonation wave in the detonation sheet propagates radially
outward until it detonates the LX-14 explosive which is
divided into 40 zones. The foam wave shaper prevents the
detonation wave from pre-igniting the LA-14 in the interior
region. This wave-shaping method changes the angle of the
incidence of the detonation wave on the liner providing for an
extremely high collapse and jet tip velocity. Fig. 7 shows the
zoning of the current simulation including aluminum liner
and LX-14 only. Due to the axisymmetry, we only model
half of the problem. There are 40 zones in the radial direction
and 46 zones in the axial direction. The high explosive has a

ring  detonation  located  at R=6cm and
Z=11529 cm.
« 1100 M sluminum
6% thickness
Stainiem steel
LX-14
Foam
\ < Detmshest
- Acryhic
\
\ - R
yar—=
\ a ~EX-12

T

11 ]
<
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11.5 g i

Fig. 6. Shapcd charge design configuration for code
calibration and venfication.

Fig. 8 shows the sequence calculations at time 30 /iS€C and 40
Hsec for both with and without slip treatment. When one uses a
2D Lagrangian code without slip for material interfaces to simulate
the shaped charge problems, the zones located at the outside ring
surface, i.e.,, DA for this problem, always present some difficulties
for calculation. Part of the problem is due to the turbulent nature of
burned product gas of the high explosive near the interface. Mest of
the existing 2D Lagrangian code for mectal-explosive interaction
does not inciude the turbulent physics or separation flow due to
turbulent. The other problem is due to the lacking of slip at the
material interface which results in high sheaning stress inside the
metal zones. This fact is observed at location D(k =1,/ = 41)
and C(k =1, =8) at time 40 LiseC on the top two plots of
Fig. 8. The final jet velocity and shape of the calculations with
slip option is much closer to the experimental data.
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Fig. 7. The 2D Lagrangian grid at time 1 LSEC with 40

Fig. 8.

zones axially in the high explosive, 6 zones axially
in the aluminum liner, and 40 zones in the radial
direction. The slip surface is from
Alk=7,=41) Bk=174¢= 1) which is
also the material interface.

wWITHOUT SLIP

t=30 wmec

AXKAL DIRECTION (cm)
The grid formation of the aluminuin liner and the
high explosive at time 30, and {0 LSeC without
slip treatment (top two plots) and with slip (bottom
two plots). At time 40 (1SeC, the liner surfaces at

D(k=7,0=41) and C(k=1,=8) arc much

closer to the expe- tal data for the calculations

with slin.

4 RADIATION HYDRODYNAMIC TEST PROBLEM

The initial mesh of the radiation hydrodynamic test problem
is shown in Fig. 9 (Top). This problem consists of a layer of
high-density material (top S rows) and a layer of low-density
material (bottom 5 rows). The problem is driven by feeding
energy into the bottom layer of low-density material to
produce a nonsymmetric shock. Initial temperature is zero in
the whole problem. At time ¢ > O, the temperature of the left
five zones as indicated by S are sct to 0.5 keV. All of the
four outside boundaries are nonflow boundaries. Fig. 9 shows
the mesh and velocity vectors at time 1 [ SEC for no slip
calculation (center) and with slip at interface (bottom). The
mesh with slip treatment is much better, and the velocity
vectors along the mterfacial grid are almost normal to the
interfacial boundary

Jw SENSITY

3 .
po e v~ -

Top: Initial mesh of L.gh- and low- density
materials with tempersture  equals  zevo
everywhere. When ¢ > (), the temperature of the
left five zones of the low density material is raised
to 0.5 keV.

Center: Velocity vectors and mesh plot at 1
i sec without slip.

Bottom: Velocity vector and mesh plot at |
M sec with slip,

5 (ONCLUSIONS

Mesh distortions along the material interfixce for 2D
Lagrangian code is a well-known problem. This situation
becotnes more serious when the density ratio of the different
materials is high. The present method described in Section I
will minimize the shearing stress along the interface and

cmmmamciansles wnnba tha racnltant velacitv vectore on  the



interfacial grid nearly perpendicular to the matenal

boundanes.

By using the present method, the total number of grids in the
problem remains constant and no dislocation or separation o
the grid point along the material interface will occur. This
makes the computations of the radiation transport much
easier. Lagrangian code is more accurate then Eulerian
method for modeling small deformation problems. But fr
large deformation, ¢.g., the shaped charge problem described
in Section 1 after time 7 > 59 11S€C, one may have to use
more rezone computaticas in order to continue the nm or
may have to use a Eulerian code to finish the calculations.
The slip method discussed in this paper can only belp the
Lagrangian calculations up to a certain point
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APPENDIX A

THE HYDRODLYNAMIC DIFFERENCE EQUATIONS

A.1 - Definitions of Fariable and Notation

In this appendix, we describe the definitions of variable and
notation which will be used for the governing cquations such

as the conservation of mass, momentum, and energy.

A typical zone of the present computation is shown in Fig.
A-1.

|
kel b=l ~k. L-1

‘ L
2

Fig. A-1.

A typical computational zone.

Oun this mesh, we then have two types of variables—zone

vanables, defined at zone centers and point variables defmed

at mesh points. The zone variables are defined so that the

mass of zone k, £ appcars as Mk 1,1 and similarly for the
N

other zone-centered quantities. We will occasionally, fr

brevity, use k,{ instead of k——;—, t’—%, andk -1,/

. 3

insteed of k-—E,é’, etc., in Fig. A-l1, the following
definitions hold:

R(%.£,t)= Eulerian coordinate (Cartesian or cylindrical) in

cm.

Z(k, ¢,1)= Eulerian coordinate (always Cartesian) in cm.
R = Vector (R.Z)

k = Lagrange coordinate

£ = Lagrange coordinate

_j= Jacobian of the transformation between(R,Z) and

(k,£) in cm2.

Letting R, = dR/ Ok, R, =R/ H, etc., then
j=RZ-RzZ (A-1)
Define

R for cylindrical coordinates
R= (A-2)
1 for Cartesian coordinates .

then a volume Jacobian may be defined as
J=Rj (A-3)
We now want to obtain the relations which take us from

Eulerian space derivatives to their corresponding Lagrange
counterparts:

R JRHKk JIRHN

_q_ = i.‘i + _aii (A-5)
JdZ JZk JZJH

Expressions are required which relate

ok/OR...0/FZtoR,,...Z,. For asbitrary g we have

* MR A (4-6)
% 2
%-—-R,;zwz,; (A-7)



Letting g =k we can solve for dk/JdR and Fk/PZ,
and letting g =/ provides df/JR and H/IZ. The
result 1s

*_4
R
*_Z4
R
(A-8)
& _R
zZ j
o _R
aZ j
which gives
9.%49 49
R jok jor
(A-9)
9 __RJ RO
aZ  jok jot

vector to R, thus

5:—;{:,%—5,5;] (A-11)
SELSELE

(A-13)

Lagrange time derivatives, i.c., partial derivatives with
respect to time with Kk and € fixed, arc written as

dR

u(k,£,t) =—=R=R = R velocity in cm/shake

v(k,£,t) =

El
%f_ =7 = Z, = Z velocity in cnyshake

u = the vector (u,v) (A-14)

where 1 shake = 10™® seconds.

In addition to the variables already defined, ie., R, Z, u, v,
which are point variables and j, a zone variable, we have the
following definitions where (Z) implies a zone variable,
(P) a point variable, and (/) an interface variable:

M =mass(gms) (Z)
T =1/ p = specific volume (cm’/g,) (Z)
P™ =material pressure (jerks/ cm’) (Z)
where 1 jerk =10'° ergs
E™ =material energy per unit volume (jerks/ cm’) (Z)
€™ =material specific energy (jerks/em) (Z)
¢, =material specific heat at constant specific volume
(jerks/gmAeV) (Z)
¢ =speed of light = 300 crmv/shake
I(7.v,€2.1) =specific intensity of the radiation ficid defined
as the rate of energy flow per unit frequency and solid angle
across a umit arca oriented pormal to the direction o

propagation at point 7, frequency Vv, in direction Q at time
r.

E=%:§ d».;[ I(v,ﬁ)dﬁ= radistion energy density
(jerks/ cm’) (Z)
F:I dv| QU(vQ)dd=  rdistive fx  (erky
cm’/sl:akc) 4(“I)
P=1j v | 6 Q)h =rtasion ey s

(jerks/ cm®) (Z)

1, (v) =absorption coefficien: at frequency v (cm’) (2Z)
u.(v) =u,(v)(l-e""'")= cocfficient
corrected for induced emission (Z)

I1” =Planck absorption coefficicnt (cm™) (Z)

K" = 1"t = Planck opacity (cm’/gm) (Z)

H® =Rosselaad absorption coefficient (cm™) (Z, 1)

K* = [i*t = Rosscland opacity (cm’/gm) (Z,1)

T =material temperature (xeV) (Z)

@ = aT* = rdiative source function (jerks/ cm’) (Z)

a =raditation constant (0.0137 jerks/ cm’/keV*") (Z)

absorption

The Lagrange form of the conservation equations is

Mass Conservation



D -

—— ~-V.u= (A-
th(l/p) i=0 (A-15)
Momentum Conservation
p2ia+ F L\‘?(P’"»,Q)ﬁ?- f’r-‘ﬁ =0. (A-16)

Dt ;7) 2

where  is an artificial viscosity term of the Von Neumann
type and P has been defined previously.
Encrgy Conservation

p—g-t-[-‘i;+(£"" +E)/p}+f7-[i‘+(Pm+Q—E)i']= w.

(A-17)
Here, W is an encrgy source in jerks/cm’/shake, and

u=|a|.

Difference over the k variable will be represented by A, i.c,,

A=
AR, =R, .-R, (A-18)
Similarly, we use & for 2 and
24
&-é:,!ﬂ =R .. -R. (A-19)

A typical zone in k,f space is shown in Fig. A-2 with
pressure defined at cell center. There arc four artificial
viscosities ¢, ,4, 19, and ,q defined along the four sides.

-1, X k-4, ¢ X

-1, -
k-1, * kq .’q k,i.—’

k-4,0 - K, ¢ -1

Fig. A-2. Typical Quadrilateral zone in K, ¢ space.

We further break up each zone into four triangles as shown in
Fig. A-3. Each of these tnangles has an associated matenal
internal energy, E|, E,, E,, E,, and likewise for the
pressure and artificial viscosity.
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54 // N

v N
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2z

Fig. A-). Centering of ¢, p, E with triangular subzone,

only ¢, ,4; 3¢, and ,g are shown.

1 here are two weighted functions which must be defined fix
use in the momentum equation. They are obtained as
follows. Define

1/ = - Rt
Droge = [Z(AR:%.:% + AR:+§.1-§) ] (A-20)

1/ = _ 2
B, 10y = [Z(‘m:q.:q + m:-§,1+§) T , (A-21)

20
A T— L (A-22)
mu{.: + wk-{.:
20
= ———t— (A-23)
D, 1oy T Dy 0y
The weighted functions are then given by
{u = max{O.é,min f,:',,l.4]} , (A-29)
e = max{O.G,min[n;‘,.lA]} . (A-25)

Essentially these weighted functions are used to weigh the
various pressure difference and artificial viscosity difference
terms in the momentum cquation based on the proximity of
the point of their formation to the point k,¢. Actually, it's
more of an inverse weight.
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7 The differenced form of the momentum equation without the The artificial viscosiies | qa, 1§41, ,qa. and g5,

radiation now becomes appeared in Eq. (A-27) are computed from
..uw’ - -n-* - .
y, =4, +Diy, (A-26) NIE ] q’"Jz" ot ,"% o 4"12' o ,"JZ'
19472 41 t-1e-1 43 ._%,1-12- 4l t-%.l-% 43 el
where )
A-28)
Dig , = (
1 1 1 JSA 00
NIEW 1 3 M7
= = ‘6'5[4371-1 -1 +7"'x-}.e--'- o4l f-l'—;'qt-i t-lJ
ol R P 1 akmq L 2 2772 2 2
k25 & 2M k| al'A
o ke-} (A-29)
_ _ ll-l 1 ._% 3 n‘% _y' l#l
g [ RIBAP 1 2[R A e A K P A S
u[ 25 o 2M x 2B
k-4t (A-30)
- - - ) q._l A q,-l %] qn«-‘L 1 ned
{2 RIHNHP 2 9f.0R ] e O e o SR S XoF AL S Ve
Tt) T2y kM x| a3lA »
B "’% (A-31)

On the right hand sides of Eqs. (A-28) through (A-31), the

artificial viscosities, , g, .4, 14, and ,g are located at the
VR TVIETS q of the triangles as shown in Fig. A-3. The

2 o Mol x4'8 center g pressure

& At+a},t J P, P°, ,P",and ,P" sppeared in the right hand side

of Eq. (A-27), arc obtained from the similar formula of

(A-2T) 1qa» 193> 194> and ,gp as given by Eqgs. (A-28) through
(A-31).
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