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A SE.MI-EULERLN METHOD FOR TREATING LAGWLNGIAll SLIDNG INTERFACES
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ABSTMCT’

hi my ~asimd hgmngim radkion hy&odpamk
dcuMion& tialong uMtEridbOdarks isaslmia.ls
problmn. Six.cthe mcah Utiuitothc_rhis b
vhllcause distorticma in fhcmdt that make lhccakuMma
vcrydiftkultn capprachdc suibcdin thisplqudoptsa

semi-lhkTiAO ahlafion hat allows matcrid eow through a

~m~dqm~ The basic icka isto
co!midcrea chpointalc mgthcslip LiBctempomrily asa
double pok One would thcnalcuMcthc motion of-
poiot scpanteIydQEnm@-ti pornta M togethu using
the autom& , This would WOWhe
UutaiAs totialongthcim=k=. Th.ia~will
dcscdxt hcmcthoda suaaiiuatwdimms ional ~
code. The f~ dashqdckrgc jdiamnpttd
Using thcplcunta dthcrmlha wcdixuaad with
andwithout thcdiptscatmd A~ “c m&&imE
tiven skk ~lon is aiao shown

1 INTRODUCTION

h M811)’ twditnasimd @ran@mradidcm hyhdynamk
CalcuMiom% *alongu MtmialbmmlMca Uswri(nls
problem. Siucc the mesh ia tied m the ~ this k
Wiilcausc diatchona inthcmahthatrnake theddatkma
verydifticu ltwhatiati tohandk t’&situdoaiaa
mdhodofaUowqJ matmial Qowalongiddhcca

Anw.u&ofmcthod.s havcbccn impkumMcdto try to mkc
czmcofthia pblmoncdthcm oat ~db
methods h hydmdywnk dculatimhaa basrslmsnthc
inkrfkx into twol.imeaindlemcsh that move wsni-
indcpuukdly, However, this method makes it mxuamy to
use some approxkarkma at the - fix cotrquting
.s~ial physics; 6X cxampk, ti rdi&m hy&dyn8mc
coupling problems.

Theapproach dmcribdi nthispapcrndopta ascmi-Eduian
dculatitm thatallow amatmialtbwthrough abgrmgim
meshalongan~ hisnot mxaaasytohavemy
s@al m+ and all mkulaticms, otk rho (he
hy&OdyMmE“%arcmchar@. Thcbaakidaiato ~
each point along he slip line tcmpomrily aa a double point.
one would then calculate the motion of cwls point sqmrdy
and then pull the pninta buk @g* using the automatic
rmsxE medmd [ 1]. Th.is would d]OWthe matcriahto &$
Skmgtheintdkc.

This~wi.U dcscriithcmcthod asuscdinatww
dimcnsiod ~ code. The fmrmstkm ofaslqd
c- jet is computed using * presmt method and the
resdtaiwc discmscd withandwithuut theshp&wmenLA
nonsymmhc rdiatkmdriven shock problem is &o ShOW1l.

2 GENEM.L DESCRDTION OF THE METHOD

Inaauhgmgian corh,thcmolaka m8raboundasyin
Oneamcm dfcdivctyticdtothc Ismleclde smthatsame

bamdasy inthcadjacent zmsc.zones along anilxufkx
amotdickmdipwith~m achothcrevatifs~h
S@ W= Phykdy dcsirabk m rc8hstk. The ~ac of the
dipc.dciamdlowbtwo~to sliptithq
m -h other.

Inthelogical docMi&wc usel?andklincs tolqxesmt the
Zzmcbcnmclql since thctifortrating?.e 1 I.irlcslip
istk5acnc as fmkliric. Welikrm &aita dm slip slong
thel?linconlyl

F-we cunaida the S@ ~ u having tWOdditiOd
masapoinm:oncassOcidCdwithfhc two- ~ above
tbddkcandthcothcr Withthc mozOIMoMs.scsbelow
theintal”ue.we dculmte &cVClcuitiu of tksc RYoassumed
poiots sqwamly by using s modifld fmut of the Schulz [2]
hyddynamk cqdcma.

If we rcf~ to Schulz% Rcpd UCRL-6776 [31 pp 28-29 (ah
sec~Aofthiawfim omredetailed tivation)
Whuchcgivcs hiaacccla’ation c+atkma; wc Sccthatatdl
tik&4_(- F@i), =hwti@tibya~or~
which m chaival b the qMcing (we Eq. (A-24) and (A-
25)). In Fig. 1, let m take the line / = /’ (6x
k=k-l, k,~dk+l)utis@he. we tempcm@
assume that point G(k, /) is two points (above and below

4). We dculatc an wxl~ vclcwity, and position
above / amibcbw l?. ?ktwepullthc two positions M
mgctb with the rcziRE technique to form a single point.
The mesh will be moved thnmgh the mamial al!owiug the
matmiab on bothsida ofthclinctomovc withrqccttu
each other. We will !ave the new vclocitiu above 1’ and
below 1!as they are. After the rczane, aa apprcqxiam velocity
forthcsing kpointw-il lbcfos’mcdtithc Winthenollwd
cmk Corrqmtation.



For the above / crdculatim we drop out the first term on
the right-hand side of Eq. (A-27) altogether (see Fig. 2), i.c.,
qk,t =0. since qk,t =0, wc have the co%cimt of the

third tcrtncoual to2. Thecoct&icmsof the2ndand 4th
terms am unciumgcd. ihcrefm, Eq. (A-27) becomes

n

([ ( )1&Iaia4pI a ~iil
- 2-{k,# ‘— ‘—

2pj a+2Mac ~4qB

k+
}

(1)

For the below 1? calcuhtiom we drop out the third tcnn on
the right-hand side of Eq. (A-27) altogether, i.e.. make

2- ~~,t = or ?!k,t =2; again thccoctlicicnts of the 2nd and

4th terms arc llnChD#d. Therefore, Eq. (A-27) becomes

(3)

The new location ~ for the above t zones (See Fig. 4) is
computed hrn

[

n+;.+~ ,,+;~+;w=Y,t+‘f ‘k,!
, Zn+Dt

‘k,! )
(5)

and the new location W fix the below t zones is obtained
by using Eqs. (2), (3), (4), and (5). Fig. 4 show the zones
along the inkd%ca * the two wparatc motions have brxm
Calculatd. These mnc9 may overlap, scpamtc, etc. In the
present example, as shown in Fig. 5, points S and W hsve
pctkCtmtCdinto the otb IMkrild. Now WC hWC the tWO

points in different positions. We now pick a point where they
should coiwick (wxh as the avmgc position). There am a
number of possible ways to pick this position.

Let M5bethe msssof’thezonc DHSE and iU6 of the

ix-meHFPS as shown in Fig. S. Similarly, M, is the mass

of the left zone below I and M8 is that of the right zone. To

get the position of the coirxidcnt point ~, we use the rnaas-
weightal av

T
of the two slip velocities. For example, the

coodinatcs of m

k++f

(2)

The results arc shown in Fig. 3. I-n calculating tie
momentum equations, we use tam 3 as they would be used
in non-slip calculations. This choice is impostant because it
means that the pmssurcs in material B sffkct the velocitica in
material A and vice versa Con.scqucntly, the scpamtc
sccelemtions arc net completely independent. However wc rrc
allowing the two sets of mass to move difftxmtty, if they m
SO illChllC~ bccauw ~ xcclcrations applied to tWO
points with the same position will give difbcat velocities
snd hence different new positions. Using the rcs~t of Eq. (1),

[1
1n+–

‘k,! 2
average

I(M5+M6+M7+M*)

wc can get the new velocity vector at time n + L 6om
2
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L’,,tl is obtainod tim Eqa. (I), (3), and (4), while

[1
1

(
I

a+- m+-
Uh,tz is h Eqs. (2), (3), and (4). Va,f]

.b

[)

1mk

cakulatcd SiD2ih2 UJ Uk,t2 .
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-

Picking a coiwidd poin4 N, flx the two poin* s d
W,*adisplaccmmt 6x both of thepoint6 which is
Uscdisrczoning.wenowuacthcfuonc[l]packagctomow
thepointstogcthcr withthcmatmial outaidethczcms _

as a vactnun. Matuial may ti bctwma - DHSE

andmm HFPswbichhavctbe samckid ofmatcrid but
atidh~3~w=ti~7.hFig,5,ti~

ti~ti~~dti ~5ddd0dt0&.

titbcrczone calculalim thckindicalcrgymb -
ennWm8yktiI~ti~ ~.1’he
mesh line inside the zonca, e.g., ~, ia moved thnmgh the
matmial, leaving the ~ in ib new paiti~ thus
auotigslip along the~.lnthcrcsulw UKa41hc
~~oftiepoin~ti~ l%e two
Vclocitiu onthctcmporary poinma’c PmsaVedfmwmtk
next cycle. This prWcs6 il _ b * @nt along b
slip line. The slip Ongaklin cishmbdlal inasimi.lar
way.

,+1

L

,’.~

Fig. 1,

k-1 k k+l

l’he Ldgran@ mnu (or logical ZJn2ca)With slip
line along ~ = / line. T& 1s42wL 3* and 4tb
terms l’qmcnt tbe four tcrro 00 b 2ig12t-handSih
ofEq.(A-27).

I

-tn-
T

I

Fig. 2. wy2d3dsnd4d2 tcrmsarcuacdfor
computing tk mnmntmn cquati~ Eq. (1), for
the above 1 cakulatiom

x

Fig. 3. Chdylsg 2ndramf 4thtcrmaarcuscd for
computing tbc momentum equati~ Eq, (2), for
d2e below 1 calculatim
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Fig. 4. Point S is the ne.v location of G for the above 1
calculation via Eq. (1). Similarly, the new
location W is tiom Eq. (2) for the Mow ~
calculation.
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Fig. 5, The top figure is the above / zones, After a mass
weighting of velocities, the coincident point ~ is
defined, Points 5 and 6 indicate the zone center of

DHSE and HFPS. Similar notations are used
for t%ebelow f zones as described in the lower
ligure.

3 CALCULATION OF SHAPED CHARGE PROBLEM
WITH SLIP

The shaped charge used in this stu~’ is described in Fig. 6.
The ahuninum ume liner haa an outside diameter of 6 cm
and thickness of ‘1.7023 cm and is divided into six zones.
The shaped charge is detonatd with a EX-12 dctonatm
which initiates the detonation-sheet explosive. The
detonation wave in the detonation sheet propagatca radially
outward until it ddonatcs the LX-14 explosive which is
divided into 40 zones. The fbam wave shaper peventa the
detonation wave !&n pm-igniting tic LX-14 in the interior
region. T’his wave-shaping metlxxt changes the angle of &c
incidaxc of the detonation wave on the liner providing fm rm
extremely high collapse and jet tip velocity. Fig. 7 shows the
zoning of the current simulation including aluminum Iincr
d Lx-14 only. m to tile axisyrnmctry, we only model
half of dic problem. There arc 40 zcmes in the radial direction
rmd 46 zones in the axial direction. The high explosive has a

* detonation Iocatcd at R=6cm d
Z=ll.529 cm.

. 1100W dummum

\\\

6% think MSI

Stmlloa Stnl

LX-14

\/

Fom

- Dblahw

\ \
~ Acryl,c

4

Fig. 6. Shagxd charge design configuradon for code
ealibratkm and verification.

Fig. 8 shows the scqumcc calculations at time 30 /.lWC and 40
Jf SW for both with and without slip tre@mcnt. Whenoneuscsa

2D b.gnsngian code without slip for material intctfkcs to simulate
the shaped charge problems, the zonca located at the outside ring
sl,rf~, ~c., ~ for ~ pr~l~, alwayspmat SOW CMCUMC5

for calculation. Pti of the problem is duc to the turbulent nature rf
burned product gas of the high explosivr near the intcrfacc. Mcst d
the existing 2D Lagran@an code tlx metal-explosive interaction
does not include the tuhdcnt physics or scpamtion flow duc to
turbulent. The other problem is due to the lacking of slip at the
n- Mzt%cc which results in high shearing stress inside the
metal zones. This &t is obacrvcd at location D(k = ],/ = 41)

and C(k = 1,/= 8) at time 40 PWC on the top two plots d

Fig, 8. The final jet velocity snd shape of the calcuhstiona with
slip option is much closer to the experimental data,
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4 RADIATION HYDRODYNAMIC TEST PROBLEM

AXIAL 21 RECTIO!4 (Cm)

Fig. 7.

Fig. 8,

The 2D Lagmr@m grid at time 1 JfSt!C with 40
zones axially in the high explosive, 6 zones axially
in the aluminum liner, and 40 zones in the radial
di.rcction. The slip surt%cc is b
A(k =7,1=41) to B(k=7, t’=1) whish is

also the matcrid interfsce.

t-30 .8ec ~IiH SLIP

/=-”-_ ‘

“’”x
AXIAL 31 RECTION (cm)

Tbc grid formstion of the aluminum liner and the
I@ explosive at time 30, and <0 /l WC without
slip treatment (top two plots) and with slip (bottom
two plots). At time 40 N !&c, the liner surtkccs at

D(k=7,f =41) ad C(k=l, ?=8) are much
Closer to the Cxpc’ Ital data fix the calculations
vnth slin.

lhc initial mesh of the radiation hydrodynamic test problem
is shown m Fig. 9 (Top). This problcm consists of a layer cf
highdcnmty material (top S rows) and a layer of Iow-demity
material (bottom 5 rows). The problem is driven by fkcding
energy into the bottom Iaycs of lowdensity material to
produce a nonsymmetric shock Initial tcmpcmture is am in
thcwhole probla. At time t>(), tbc~ofthe left
tie 2XMXS as kdkatcd by S arcset to 0.5 kcv’. All of the
four outsi& boundaries ruc non.flow boundaries. Fig. 9 shows
the mesh and velocity veetms at time 1 ).fSt3C h no slip
eakuladon (ccntcr) and with slip at ~ (bottom). The
mesh with slip tmatmcnt is much bCttCr, and the veiocity
vectors along the intcrfhcisl grid am almost normal to the
intert%cialhomdary.
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Fig. 9. Top: Initial mesh of L@- and low- density
matmials with temperature equals m
evuywhcrc. whent>o, thetempmtm Of the
Iefl five zones of the low density material is raised
tn 0.5 kcV.
Centm Vcbcity vectors and mesh plot at 1
/.fsec without slip.

Bottom: Velocity vectm and mcsb plot at 1
Jfsec with slip.

5 t ONCLUS1ONS

Mesh distortions along the material intake fix 2D
Lsgmn@m code is a well-known problem. This situation
bceorncs more serious whcri the density ratio of the diff-
materials is high. The present method described in Section II
will min.imk the shearing stress along the intmtke and
.----- ..-.1., _,. I.- A.. H...I*.-* “ci-iw vtwtntw nn the



iIIrdicial grid nearty pmprndicular to the rnatcrd
boundaries.

By using the present mcthcd rhe total number of grids in the
problcm nmmins constant and no dislocation or separation d
the grid point along the material intrafke will occur. This
mskcs the computations of the mdiation transpofl much
easier. Lagmngian code is mom accwate then Eukian
method fix modeling small deformation probkrns. But ST
large deformari~ e.g., rhe shaped charge problem dcscribai
in Section IHaf&rtirnef>50 /f St2C,oncmSyhSvemw
more -C computatic.ns in order to continue the run cr
may have to usc a Eultian code to tinish the calculations.
The slip method discussed in this pqer am only help the
bgrangian udculations up to a catain point
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APPENDIX A

THE HYDROD~~C DIFFERENCE EQUATIONS

A. 1- Definition of Variable and Notation

In this appendix, we describe the dctitiom of variable and
notation which will be used for the governing equations such
ss tie conservation of mass, momtm~ and energy.

A typical zone of the present computation is shown in Fig.
A-1.

R

t

Z*

+--+-’
ILk-i, L.-1 i ‘i, i-1

On ttusmcsb wc then have two types of variablemnc
vtuiable% dcbed at 2xmc centers snd point varkblcs *
at mesh points. The zone variables w Mined so that the
mass ofzme k,! appcsrsas Mklt , and similarly fcr the

2’ -i
other mne+mterd quantities. We will occasiorndly, ix

brevity, usc k,f imtcd of k-~, l-~, andk-l, t’

3
insted of k-y ,.?, etc., in Fig. A-1, the following

L

definitions hcdd:

~(k. /, f)= Eulerian COOKk@C (_Sti or CYkMkk~)

cm.
Z(k, f, f)= Eulcrian coordinate (always Cartesian) in cm.

R= Vect.r (U)
k=mgemordinatc
/?=l&zranuecOCTdinatc
j= J&bin of the tmnsfomstionbctwtul(l?,z) ad

(k,/) in C&.

Ixtting ~ = JRl&,.Vt = ~R/&, CtC., then

j = R~Zt - Rtzk (A-1)

[

R. for cylindrical coordinates
ii= (A-2)

1 for Cartesian coordinates .

thena volume Jacobian may bc &Fmd as

.
J=Rj .

We now want to obtain the
Eulcrian spc-c derivatives to
Countcrparm

(A-3)

rchttions which take us !ium
their Comcsponding Lagmllge

(A-4)

(A-S)

Exprcssiom are required which relate
&l~R...t3tl&? toR~, ... zt. Forarbitrary gwchsve

(A-6)

(A-7)

Fig. A-1, A typical computational zone.



hting g=k wean solve fa ~kit3R and i3k/b Z,
SUd letting g= f pro~ldcs ~[laR and &l~Z, ‘he

result 1s

ik=.z,
*-j-

& Zk

z=~
(A-8)

&=$

%ij

%=3.
cZj

which @VCS

Now Mine a vector ~which lags ~ by 90°as the normal

vector to R, thus

~ = (Z.-R) . (A-1O)

We now &fine the gmdicnt operator in Lagrange space 8s

V+ fiwhcrc

(A-n)

(A-12)

Hence, for arbilrtuy functicm f and vcator ~, we have

(A-13)

Lagrange time derivatives, i.e., partial derivatives with
respect to time with k and / fixed arc written as

al
R ~ = R velocity in cdshakeu(k, f,t) =x = “ =

v(k, f,f) = ~ = 2 = Z, = Z velocity in crdsha.ke

ii = the vector (u. v) (.4-14)

what 1 shake = 104 seconds,

h additioo to the variables shady dcfme~ i.e., R, Z, u, v,
which arc pornt variables and j, a zone variabl< we have the

following dcfinitioos where {Z) implies a zmc variablq

(~) a point variable, and (1) an in- variabk:

A-f=mass(gms) (z)
r =1/p= spccitic volume (cm’1~) (Z)

P =matcrial pressure (@IN cm’)(z)

where 1jerk = 10’6q
EM =Inataid Cmrgy pcr unit Voiumc (jcrld cm’) (z)
E“=UMtcridSpecificCncrgy(jC3wcm)(z)
c“ = mskrid spccifk heat * cO~ ~ifk VOhlmC

(jcflM/gm/kev) (z)
C=spccd of li@t = 300 CKdSh8kC

I(F, v, fi,f) =spcdk intensity of tic radiation ficid &6rxd

asthcratc ofcncrgy flowpcr unit ficqumy andsotid angle
acroasa unitmaoticntcd normal tothcdircctioncf

propagation at point 7, hxpmwy v, in direction G at time

r.

-0 4X

(@s/ cm’) (Z)

F= J (q’ qv,iqdi-2 = ‘dative flux (jCrkd

CnALkc)~1)

Pa(v) =**U cmfiia: atfkqucwy v (cm”’) (Z)
p;(v) = p~(v)(l -e-’’’”w) = absorption COctEcicnt

mmctcd for ind~ cmissi~ (Z)

‘“ =Planck absmption coefficient (cm-’) (Z)P

K’= ~’~ = Planck opacity (cm2/gm) (Z)

jl~ =Roasdaad absmption coefficient (cm”’) (Z, 1)
@ = ~R~ = RossclamJ opacity (cm2/gm) (Z, 1)

T =mamisd tcmpcmm (Kcv)(z)
(p=aT’ = 3adiative somw function (jcrkd cm’) (Z)

a =raditation constant (0.0137 jerk.d cm3/keV”) (Z)

The Lagrange form of the conscmation equations is
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✎

+up)-%o (A-IS)

whcmQ is an artifkMviscosityt- of* VOUNCUIMIUI
=r

typeand P has been defied PtiW&.

~QR

p;[;+(Em+4,p]+~[~+(fl+Q-’Fl=w

(A- 1n
Here, W is an energy wmrce in jerks/cm’/~e,

u=w”
DiffuemcOVUtb~VfUi8b]Cd berq.xtmitiby A,

6’

‘=zd

&d

i.e..

m+,,=R+u- *C (A-18)

d
similarly, we use 6 fix — and

at

q,++ = *.,+, - get (A- 19)

A typical zmc in k,/ sp is shown in Fig. A-2 with
pressure defined at ceU center. There arc fax wtificd
viscosities , q, ~q, ~q, ~d ~q defi~ ~ong ~ f- sid~.

*q

-77----’-1

,L

k, i. -t

K, i-i

Fig. A-2. Typical Quadrilateral zone in k, t space.

R

We~brdup tachmncuMUf OUr~@s MShownuk
Fig. A-3. &h of these mangles has at asscmatedrmtcnsl
Iutmud amgy, q,q,&E~, and L&XVUe fM the

pmmm and artificial viscosity.

.-

<-..

I

I
I ,

‘+:
I “’ ,~~’,. / .;

:3 -s/
‘.,

,/’ ,4

T, ~ ‘-”

I .’ /, ., ’.’/’

., /:,!
/

--- ,

lhcrc sre two weighted fimctkmwhichmw be &fined fix
usc in the momentum equation. They arc obtained m
follows. Define

(A-20)

(A-21)

(A-22)

(A-23)

Theweighted timctiona are then given by

~k,t = max{O.6,min[&l.4]} ,

qk, = max{0.6,min[qj,t,l .4]}

(A.24)

(A-25)

EsscntialIy these weighted functiooa arc used to weigh the
various measure difhanx and ficia! viscosity diffrscmc
terms in”the momentum equation based on the proximity cf
the point of their formation to the point k,/. Actually, it’s
more of an iuvcmc weight.
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.’ Tbcdifku3dfofmo fchctnomc ntumcqustion wdoutt!kc Tbe artlfkd Wcosikies
m

rzdskkon mw becomes lqAJ M:* ld, ~d dq;,

appralm Eq.(A-27)attcaqwdtimn

(A-26)

(A-27)

(A-28)

(A-29)

(A-30)

(A-3 1)

On the right hand sides c# Eqs. (A-28) through (A-31), the
~ viwositi~ ~g, ~q, ~q, ad ,q arc hxatsxI at tie
c- &the triangles as &own in Fig. A-3. The pressxe
,~, ~~, #“,and & _ in the right lured Sk&

of Eq. (A-27), arc obtained - the similar fosmuls cf
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